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Objective of the climate risk assessments 
Climate change can intensify already existing challenges for farmers and suppliers across the 
world. Impacts of climate change, in the form of higher temperatures and highly varied 
precipitation will significantly affect crop performance. There is an urgent need from decision 
makers and farmers for detailed information on magnitude of climate change impacts, strategy 
for climate change adaptation, and implication on business operation. The Alliance of 
Bioversity-CIAT carried out the climate risk study with the aim to increase understanding within 
the supply chain of local risks and opportunities arising from climate change and creating a 
resilient farming system.  

The goal of this methodology document is to make the study’s approach transparent and 
accessible by users of the online Climate Impact Tool. Section I covers background 
information on the climate data used in the analyses and the advantages of this data in a 
science-based approach. Section II describes how the climate data is used in a specific agri-
climatic modelling approach for climate suitability to potato crop. Section III describes the 
wider-reaching approach to anticipate climate impact on supplier sourced commodities more 
generally.  

 

I. Modelling approach to understand the influence of climate 
change and variability on crop productivity 
 

Overall approach 
An improved understanding of the resilience of global crop production and how this may shift 
with climate change is urgently needed. Two main categories of factors that have great 
influence on plant growth as well as on the increase of crop yield/production are biotic and 
abiotic factors. Biotic factors (e.g., crop variety) and abiotic factors (e.g., temperature, rain, 
humidity, solar radiation, soil moisture etc.) affect plant growth and crop yield. Agricultural 
crops normally undergo a series of physiological processes during phenological stages of their 
life cycles that are sensitive to different environmental and climate conditions.  
 
Several studies indicate strong associations between climate change and agricultural crops, 
either by using empirical (statistical) models, mechanistic (process-based) approaches or a 
combination of both. However, there are only a few studies that focus on this relationship at 
the plot level over large domains or countries due to lack of data, underscoring the importance 
and value of these data. Empirical models can be used to predict how these factors drive crop 
yields (Schlenker and Roberts 2009; Lobell and Burke 2010; Lobell et al. 2011; Urban et al. 
2012; Osborne and Wheeler 2013; Moore and Lobell 2014; Ray et al. 2015). These models 
use local environmental conditions, including climate data as well as all available grower data. 
Previous research has shown that these empirical models are well-suited to determine the 
impact of climate and agricultural practices on growth and development, and that they can be 
a useful tool to assess the long-term impact of climate and associated environmental risks on 
crop yield.  
 
For crops sourced directly, we are able to use the large amount of direct grower data in the 
PepsiCo-CGIAR partnership to run empirical models. Empirical modelling allows us to 
leverage extensive potato grower data from direct crop souring teams in 10 countries across 
different climatic zones. Generalized Additive regression Models (GAMs), are selected over 
other statistical and machine learning methods because of their flexibility in modelling non-
linear relationships and to identify the most limiting factors of yield. The outputs from GAMs 
are used to map climatically suitable growing regions for potato. This suitability map is then 
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coupled with business impact modelling to tailor business case adaptation recommendations 
for each country. Detailed steps for the agri-climatic modelling approach for direct crops are 
described in Section II of this document.  

For crops usually sourced indirectly through suppliers, no detailed plot-level grower data is 
available to inform an agri-climatic modelling approach. Instead, the study on supplier sourced 
crops leverages public data from scientific literature and expert interviews to give a global view 
on more than 8 crops in over 50 countries. Harnessing the knowledge in the vast amount of 
scientific literature published on these crops globally, this proves to be a robust option in the 
absence of field data direct from growers’ plots. As peer review literature for each crop and 
growing regions is gathered, relevant information on growing calendars, climate-crop 
sensitivities, best climate models, and adaptation practices is extracted and organized. This 
helps associate crop performance with specific types of climate risk and provides a case for 
adaptation priorities. Detailed steps for the climate risk assessment for supplier sourced crop 
approach are described in Section III of this document. 

 

Climate data 
 
Climate data can be separated into baseline (current) and future.  
 
Baseline (current) climate data: Gridded climate data are acquired from the fifth generation 
of the European ReAnalysis, hereafter ERA5-Land (Muñoz-Sabater et al. 2021). Gridded 
climate data gives us access to daily high-resolution climatological data based on direct 
observations and over long time periods. The reason this is used is that there are not enough 
weather stations worldwide to cover every point on the earth. Gridded climate data solve this 
issue. These data describe the evolution of the water and energy cycles over land globally, at 
a 9km resolution. This is achieved through global high-resolution numerical modelling of the 
European Centre for Medium-Range Weather Forecasts (ECMWF) land surface model, which 
is driven by the downscaled meteorological forcing from the ERA5-Land climate reanalysis. 
Due to the scarcity of equally distributed on-the-ground weather stations, as well as the 
limitations point data incurs, ERA5-Land provides the best representation of high-resolution 
and reliable climate data source covering the globe. There are alternative gridded climate 
products providing similar data such as Worldclim and TerraClimate (Fick and Hijmans 2017; 
Abatzoglou et al. 2018), however these are only at monthly resolution.   
 
Future climate data: Future daily climate are extracted from CMIP6 (Eyring et al. 2016). 
CMIP6 data (Coupled Model Intercomparison Project Phase 6 data) refers to a comprehensive 
set of climate model simulations that are designed to simulate the Earth's climate system and 
predict future climate change.  
 
CMIP6 consists of 134 models from 53 modelling centers (Durack [2016] 2020). The scientific 
analyses from CMIP6 are used extensively in the Intergovernmental Panel on Climate Change 
6th Assessment Report and are the most trusted source on future climate projections. These 
scenarios are highly flexible and allow for assessment of climate change impacts on crop 
production in an interpretable way while accounting for the uncertainty that is implicitly part of 
climate model projections and emission scenarios. The Climate Model Intercomparison 
Project (CMIP) was established in 1995 by the World Climate Research Program to provide 
climate scientists with a database of coupled Global Circulation Model (GCM) simulations. 
CMIP6 is the sixth and latest iteration of the leading international effort to bring together 
climate modelers from around the world to improve our understanding of past, present, and 
future climate change. 
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II. Direct crops 
Process overview 
For crops sourced directly (e.g., potato) we are able to leverage insights from plot-level grower 
data in the PepsiCo-CGIAR partnership to complete three major steps that result in:  

1) determining the major climate drivers and limiting factors of potato crop 
yield/production in each country at high resolution;  

2) mapping the suitability based on these major climate drivers and limiting factors both 
under baseline (1970-2000) as well as the future (2030) climate change scenarios, 
and; 

3) modelling the business impacts of the cascading effects of climate change risk. 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Agri-climatic modelling approach 
 

1. Climate data processing for potato crop 
 

Climate variables considered for the analysis are rainfall, air temperature (minimum, mean, 
maximum), diurnal temperature range, soil moisture, relative humidity, solar radiation, and 
other derived variables. These variables are extracted and aggregated for each country based 
on each of the grower location coordinates and corresponding planting and harvesting dates. 
Climate variables are calculated for both the whole growing season as well as each 
phenological phase. The phenological phases are vegetative, reproductive, and bulking. This 
process is replicated for both the baseline and future climate data. This is done in order to 
account for the more “sensitive” growth stages in the season. 
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2. Statistical modelling and suitability mapping 
 

2.1 Statistical modelling 
 

Generalized Additive regression Models (GAMs) (Hastie and Tibshirani 1986) are used 
together with multi-model selection (Fisher et al. 2018) to identify the key climate drivers for 
each country and regions potato production while accounting for all available grower variables 
such as supplier, variety etc. The value and reason for selecting these models are outlined in 
the introduction. All analyses are carried out in R (R Core Team 2021). The GAM has the 

following equation, where: 

log(𝑦𝑖𝑗) = 𝛽𝑜 +  𝑓(𝑥𝑖𝑗) + 𝑧𝑖𝜑 + 𝜖𝑖𝑗 

𝜖𝑖𝑗 ~𝐺𝑎𝑚𝑚𝑎(𝛾) 

𝜑 ~ 𝑁(0, ℶ) 

Yields (y) are modelled as a non-linear (f) function of predictor variables (x) for each country 
(i) and year (j) using a Gaussian distribution with an Identity link. A random effect (φ) for each 
country (Zi) is included to account for the repeat measurements for each year at the country 
level. Random-effects control for non‐independence by constraining non‐independent 
observations to have the same intercept. For example, yield observations from a particular 
country or region, may be more similar (e.g., higher on average if soils and management 
techniques are better) relative to yield observations from other regions or countries. To 
account for temporal autocorrelation, ‘year’ is modelled as an autocorrelation structure of 
order. There are 24 climate variables (maximum temperature, minimum temperature, total 
rainfall, total soil moisture, diurnal temperature range and solar radiation for both the 
vegetative, reproductive, and bulking seasons) in the initial model selection. Model selection 
also accounts for multi-collinearity by ensuring no models included variables with a Pearson 
coefficient r > |0.5|. Model selection then ranks candidate models based on both Akaike 
information criterion (AIC) and Bayesian information criterion (BIC). The final GAM model is 
selected based on AIC and BIC and captures statistically significant climatic trends and drivers 
of potato yield. Results from the GAM are presented as smooth curves, where firstly the height 
of the response curve of each predictor provides an indication of the total amount of yield drive 
associated with a specific climate gradient/variable. Secondly, the slope of the smooth curve 
at a specific point provides an indication of how the rate of yield varies along the climate 
gradient/variable concerned. 
 

2.2 Suitability mapping 
 
From evaluating fitted GAM smooths and outcome statistics, a range-based approach is then 
used to classify crop-climate suitability into four categories: suitable, marginal, stressed, and 
unsuitable growing conditions. Suitability thresholds vary by country as the statistical modeling 
is done at the country level.  
 
Based on the sensitivity of potato to climate variables from GAM modeling, we create suitability 
maps for both baseline (1970-2000) as well as the future (2030) scenarios. The change in 
suitability between baseline and future scenarios is also calculated to determine areas of 
opportunity and risk. These suitability maps are then created in an html format for them to be 
explored in a dynamic dashboard.  
 

3. Business Impact modelling 
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The Business Impact Model uses scenario analysis to investigate the cascading effects of 
climate change risk on the performance of business. The impact is first assessed under a 
“business as usual” or reference-case scenario, in which no changes to farm management are 
introduced to cope with the risk. This is compared to a “climate resilience” or adaptation 
scenario in which reduced yield losses are estimated based on yield loss buffering effects 
documented in the literature or business data (e.g. from demo farm records). Recommended 
practices such as drip irrigation and improved varieties are taken into account in Climate 
Positive scenario. The process includes comprehensive and quantitative estimates of 
adaptation options and their costs, and benefits, potential opportunities given climate change. 
A main advantage of the model is an in-depth examination of various scenarios, allowing 
business leaders to test decisions and understand the scale of the potential impact with the 
most up-to-date information. A major limitation of the model is the difficulty to gather data for 
adaptation scenarios. Values are taken from a variety of sources, including literature, 
interviews with management, and interviews with subject matter experts. 
 
Inputs: 
Business data such as procurement volume, cost of production, and projected distribution of 
volumes across regions and seasons are required inputs for inferring the impact of climate 
risks to the business.  
 
Suitability maps resulting from the climate analysis are used to assess regional and local 
climate risks, then prioritize site-specific adaptation practices and make long-term adaptation 
strategies. This approach involves understanding possible regional patterns of climate change 
and socioeconomic factors that drive or limit adoptability of the practices.   
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III. Supplier sourced crops 
Process overview 
Climate variability and change have significant implications for crop production, affecting crop 
yield and quality worldwide. With the Earth's climate continuously evolving, understanding the 
effects of climate extremes, such as droughts, floods, heatwaves, and frost, on crop yields has 
become increasingly crucial. The sensitivity of different crop types to environmental factors 
can result in varying extents of impacts of climate extremes on crop production. Therefore, 
understanding the unique sensitivities of different crop types to climate extremes as well as 
how these impact crops in the future is crucial for developing effective strategies to mitigate 
the negative impacts of climate change on agriculture.  
 
To achieve this, a three-step approach is applied. In the first step, existing literature is 
compiled to understand the main growing seasons of each crop in each focal country and the 
extent of positive and negative impacts of climate factors on each specific crop yield. Then, 
the best climate models are identified to represent different countries' baseline and future 
(2030) climate. Finally, the compiled data and selected climate models are used to project the 
impact and adaptation practices on crop yields in each of the crops main growing season, 
which is visualized on an interactive dashboard. This approach enables stakeholders to better 
understand the impacts of climate extremes on crop yields and identify effective adaptation 
strategies to ensure food security and sustainable agriculture in the future. 
 
               

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 2. Climate risk and opportunity assessment methodology   
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1. Understand climate impact 
 
Daily climate data are extracted for each crop per country. These data cover both the baseline 
(current climate) as well as future. The baseline period is considered the period from 1980-
2000. The reason an average of 20 years is taken is to ensure that no biases are included by 
selecting a particular year which may be unrepresentatively hot, dry, cold or wet. The future 
climate period is also based on a 20 year span covering the years 2020-2040, which is typically 
used for a 2030 climate. Certain GCM’s are more powerful than others depending on the 
geographic region. Therefore, we selected a different subset of GCM’s for each region 
depending on the performance for that country or region. The selection is expanded on below 
in “Quantify climate impact”. This data is used to produce four indices representing climate 
extremes that result in the largest net yield gain or loss risk for each jurisdiction during the 
growing season: heat, frost, flood, and drought. These risks are defined and calculated as 
follows: 
 
Table 1. Climate risk definition 

Climate risk Definition 

Heat stress Heat stress is a climate extreme index which accounts for the number of 
days during the growing season that temperatures rise above the thermal 
limit for each crop type. 

Frost risk Frost risk is a climate extreme index which accounts for the number of days 
during the growing season that conditions drop below freezing. 

Flood risk Flood risk is a climate extreme index which accounts for the total amount 
of precipitation accumulated within a consecutive 5-day period during the 
growing season. 

Drought risk Drought risk is a climate extreme index that accounts for both precipitation 
and evapotranspiration during the growing season. 

In addition, the growing season, or the period between planting dates and harvesting dates, 
varied for each crop and country. This information is gathered from peer-review papers and 
databases from official sources. The list of reference sources for growing season is detailed 
in Annex D. 
 

2. Quantify climate impact 
 
A systematic review methodology is applied to assess all existing literature on crop limits and 
limiting factors to quantify the greatest limiting factors and ranges on crop yield. To achieve 
this, a comprehensive search of scientific databases is carried out, including peer-reviewed 
articles, conference proceedings, and scientific reports. The retrieved articles are then 
screened for relevance and quality and selected those that met our inclusion criteria. Specific 
data on crop types, yield, and limiting factors are extracted from the selected articles and 
synthesized using meta-analysis techniques. This approach enables the quantitative 
estimation of the relative importance of different climate risks (heat, frost, flood, drought) and 
their ranges on crop yield across different crop types, utilizing the vast amount of published 
literature on these crops. All crops and countries are shown below in Table 1. The climate 
risks’ ranges on different crops are specified in Annex E and the list of literature on limiting 
factors is detailed in Annex F. 
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Table 2. List of crops and countries included in the scope thus far 

Sector Corn Oats Wheat Sugar 

beet 

Canola Soy Sugar-

cane 

Sun-

flower 

Table 

grape 

North America x x x x x x x x  

Europe & 

Russia 

x x x x x x  x  

South Africa x x x      x 

Egypt x   x      

Brazil x  x   x x   

India x         

Australia x x x  x     

The accuracy of GCMs in predicting climate conditions in different countries depends on a 
complex interplay of data quality, model assumptions and emission scenarios. Using all 
available academic literature, GCMs are gathered according to their accuracy per country, per 
region and all selected GCMs are averaged to produce an ensemble frost, drought, heat, and 
flood risk index per country. This ensures that only the best models are selected to better 
capture the complexity of the Earth's climate system and improves the ability to predict future 
climate change. The list of literature for GCMs assessment is detailed in Annex G.  
 

3. Project impact of climate adaptation practices 
 
Based on the criteria established in the "Quantify climate impact" section above, the crop yield 
of each crop is calculated for specific administrative levels, using categories of extremely high 
yield loss, high yield loss, moderate yield loss, no change, moderate yield gain, high yield gain, 
and extremely high yield gain. This process is conducted for both the projected climate 
conditions and a hypothetical simulation of a scenario that visualizes the potential adaptation 
impact of regenerative agriculture practices, referred to as a resilient scenario.  
 
The resilient scenario is created based on a systematic literature review. For each location, a 
search is conducted to identify a range of options that can reduce the risk and enhance farm 
resilience. These options include changes in agricultural practices such as drip irrigation, cover 
cropping, or pest & disease scouting, etc. With the literature review, current adoption rates are 
assessed to determine the practices’ feasibility and opportunity to increase climate resilience. 
The process also involves assessing the potential benefits and limitations of each option with 
regards to their impact on livelihoods, greenhouse gas reduction and biodiversity. Based on 
previous assessments, a list of adaptation options is generated and prioritized with multiple 
factors across their feasibility, sustainability, and constraints to develop implementation plan. 
After identifying adaptation measures for each specific region, adaptation options are 
integrated into the base map with their yield benefits. Adaptation scenarios are then overlayed 
to see how effectively packages of adaptation options would reduce climate risks. The list of 
literature used for the resilient pathway development is detailed in Annex C.  
 
Subsequently, these maps are also overlayed by production area (Monfreda, Ramankutty, 
and Foley 2008) to visualize the magnitude of the impact as well as the simulation of a potential 
resilient scenario. The results are integrated into an interactive dashboard. Within the 
dashboard each admin level is mapped according to its greatest limiting factor. 
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Annex D – Crop calendars and data sources 
 

 
 
 
 

Country Growing period  Crop Data sources 

South Africa November-May Maize https://ipad.fas.usda.gov/ogamaps/cropcalendar.aspx 
 
https://www.fao.org/giews/countrybrief/ 
 
https://www.nda.agric.za/docs/Brochures/Oats.pdf 
 
https://americansugarbeet.org/who-we-are/what-is-
sugarbeet/ 
 
https://www.actascientific.com/ASAG/pdf/ASAG-06-
1090.pdf 
 
https://www.uscanola.com/crop-production/spring-
and-winter-canola/ 
 
https://www.ifastat.org 
 
https://api.ifastat.org/reports/download/13300 
 
Sacks, W.J., D. Deryng, J.A. Foley, and N. 
Ramankutty (2010). Crop planting dates: an analysis 
of global patterns. Global Ecology and Biogeography 
19, 607-620. DOI: 10.1111/j.1466-
8238.2010.00551.x. 
 

South Africa May-December Oats 

South Africa May-November Wheat 

Europe and 
Russia 

April-October Maize, Oats, Sugar 
beet, Soy, 
Sunflower 

Europe and 
Russia 

Jan-December Wheat, Canola 

Egypt May-November Maize 

Egypt September-
April 

Sugar beet 

Brazil October-August Maize 

Brazil April-December Wheat 

Brazil October-May Soybean 

Brazil Jan-December Sugarcane 

India 
(Kharif) 

March- 
December 

Maize 

Australia October-June Maize 

Australia April-December Canola, Oats 

Australia April-January Wheat  

US  April-November Maize 

US Jan-December Oats, Wheat, 
Sugarcane  

US September-
June  

Canola  

US April-October Sunflower, Sugar 
beet  

US May-October  Soybean 

Canada May- November Maize, Soybean  

Canada May- October  Oats, Canola, 
Sunflower 

Canada Jan- December Wheat, Sugarcane 

Canada April-
September 

Sugar beet  

Mexico  Jan-December Maize, Sugarcane, 
Oats 

Mexico  September-July  Wheat  

Mexico  April-
September 

Sugar beet  

Mexico  November-
June 

Canola   

Mexico  April-December Soybean, 
Sunflower 

https://ipad.fas.usda.gov/ogamaps/cropcalendar.aspx
https://www.fao.org/giews/countrybrief/
https://www.nda.agric.za/docs/Brochures/Oats.pdf
https://americansugarbeet.org/who-we-are/what-is-sugarbeet/
https://americansugarbeet.org/who-we-are/what-is-sugarbeet/
https://www.actascientific.com/ASAG/pdf/ASAG-06-1090.pdf
https://www.actascientific.com/ASAG/pdf/ASAG-06-1090.pdf
https://www.uscanola.com/crop-production/spring-and-winter-canola/
https://www.uscanola.com/crop-production/spring-and-winter-canola/
https://www.ifastat.org/
https://api.ifastat.org/reports/download/13300
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Annex E – Climate risks’ ranges 

Climate risk definitions 

Yield limiting factor Definition 

Heat stress 
The number of days during the growing season that temperatures 
rise above the thermal limit for each crop type 

Frost risk 
The number of days during the growing season that conditions 
drop below freezing 

Flood risk 
The total amount of precipitation accumulated within a 
consecutive 5-day period during the growing season 

Drought risk  
Climate extreme index that accounts for both precipitation and 
evapotranspiration during the growing season  

 

Baseline 

Canola     

Yield limiting 
factor  Low risk Moderate risk High risk 

Extremely high 
risk  

Heat stress [-1,4] [4,7] [7,10] [10,99] 

Frost risk [-1,70] [70,160] [160,230] [230,365] 

Flood risk [-100,100] [100,150] [150,200] [200,1000] 

Drought risk  [0,15] [15,19] [19,23] [23,1000] 

     

Corn     

Yield limiting 
factor  Low risk Moderate risk High risk 

Extremely high 
risk  

Heat stress [-1,5] [5,8] [8,11] [11,99] 

Frost risk [-1,30] [30,80] [80,130] [130,365] 

Flood risk [-100,100] [100,150] [150,200] [200,1000] 

Drought risk  [0,15] [15,18] [18,21] [21,1000] 

     

Oats     

Yield limiting 
factor  Low risk Moderate risk High risk 

Extremely high 
risk  

Heat stress [-1,4] [4,7] [7,10] [10,99] 

Frost risk [-1,80] [80,170] [170,240] [240,365] 

Flood risk [-100,100] [100,150] [150,200] [200,1000] 

Drought risk  [0,15] [15,18] [18,21] [21,1000] 

     
 
Soybean     

Yield limiting 
factor  Low risk Moderate risk High risk 

Extremely high 
risk  

Heat stress [-1,5] [5,8] [8,11] [11,99] 

Frost risk [-1,70] [70,160] [160,230] [230,365] 

Flood risk [-100,100] [100,150] [150,200] [200,1000] 

Drought risk  [0,15] [15,18] [18,21] [21,1000] 
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Sugar beet     

Yield limiting 
factor  Low risk Moderate risk High risk 

Extremely high 
risk  

Heat stress [-1,5] [5,8] [8,11] [11,99] 

Frost risk [-1,80] [80,170] [170,240] [240,365] 

Flood risk [-100,100] [100,150] [150,200] [200,1000] 

Drought risk  [0,15] [15,18] [18,21] [21,1000] 

     

Sugarcane     

Yield limiting 
factor  Low risk Moderate risk High risk 

Extremely high 
risk  

Heat stress [-1,6] [6,9] [9,12] [12,99] 

Frost risk [-1,30] [30,80] [80,130] [130,365] 

Flood risk [-100,100] [100,150] [150,200] [200,1000] 

Drought risk  [0,15] [15,20] [20,28] [28,1000] 

 
Sunflower     

Yield limiting 
factor  Low risk Moderate risk High risk 

Extremely high 
risk  

Heat stress [-1,6] [6,9] [9,12] [12,99] 

Frost risk [-1,70] [70,160] [160,230] [230,365] 

Flood risk [-100,100] [100,150] [150,200] [200,1000] 

Drought risk  [0,15] [15,19] [19,23] [23,1000] 

 
Wheat     

Yield limiting 
factor  Low risk Moderate risk High risk 

Extremely high 
risk  

Heat stress [-1,5] [5,8] [8,11] [11,99] 

Frost risk [-1,70] [70,160] [160,230] [230,365] 

Flood risk [-100,100] [100,150] [150,200] [200,1000] 

Drought risk  [0,15] [15,19] [19,23] [23,1000] 

     

Table grapes     

Yield limiting 
factor  Low risk Moderate risk High risk 

Extremely high 
risk  

Heat stress [-1,4] [4,7] [7,10] [10,99] 

Frost risk [-1,70] [70,160] [160,230] [230,365] 

Flood risk [-100,100] [100,150] [150,200] [200,1000] 

Drought risk  [0,15] [15,18] [18,21] [21,1000] 
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Projections 

Canola        

Yield 
limiting 
factor  

Extremely 
high yield 
gain  

High yield 
gain 

Moderate 
yield gain 

No 
change  

Moderate 
yield loss 

High yield 
loss 

Extremely 
high yield 
loss  

Heat 
stress NA NA NA [-99,1] [1,12] [12,24] [24,99] 

Frost risk [-1,99] [-12,-1] [-22,-12] [-99,-22] NA NA NA 

Flood risk NA NA NA [-1000,50] [50,150] [150,250] [250,1000] 

Drought 
risk  NA NA NA [-1000,1] [1,2] [2,3] [3,1000] 

 
Corn        

Yield 
limiting 
factor  

Extremely 
high yield 
gain  

High yield 
gain 

Moderate 
yield gain 

No 
change  

Moderate 
yield loss 

High yield 
loss 

Extremely 
high yield 
loss  

Heat 
stress NA NA NA [-99,1] [1,3] [3,5] [5,99] 

Frost risk [-1,99] [-10,-1] [-20,-10] [-99,-20] NA NA NA 

Flood risk NA NA NA [-1000,50] [50,150] [150,250] [250,1000] 

Drought 
risk  NA NA NA [-1000,0] [0,1] [1,2] [2,1000] 

 
Oats        

Yield 
limiting 
factor  

Extremely 
high yield 
gain  

High yield 
gain 

Moderate 
yield gain 

No 
change  

Moderate 
yield loss 

High yield 
loss 

Extremely 
high yield 
loss  

Heat 
stress NA NA NA [-99,1] [1,12] [12,24] [24,99] 

Frost risk [-1,99] [-14,-1] [-24,-14] [-99,-24] NA NA NA 

Flood risk NA NA NA [-1000,50] [50,150] [150,250] [250,1000] 

Drought 
risk  NA NA NA [-1000,0] [0,1] [1,2] [2,1000] 

        

Soybean        

Yield 
limiting 
factor  

Extremely 
high yield 
gain  

High yield 
gain 

Moderate 
yield gain 

No 
change  

Moderate 
yield loss 

High yield 
loss 

Extremely 
high yield 
loss  

Heat 
stress NA NA NA [-99,1] [1,3] [3,5] [5,99] 

Frost risk [-1,99] [-12,-1] [-22,-12] [-99,-22] NA NA NA 

Flood risk NA NA NA [-1000,50] [50,150] [150,250] [250,1000] 

Drought 
risk  NA NA NA [-1000,0] [0,1] [1,2] [2,1000] 

         

Sugar beet       

Yield 
limiting 
factor  

Extremely 
high yield 
gain  

High yield 
gain 

Moderate 
yield gain 

No 
change  

Moderate 
yield loss 

High yield 
loss 

Extremely 
high yield 
loss  

Heat 
stress NA NA NA [-99,1] [1,3] [3,5] [5,99] 

Frost risk [-1,99] [-14,-1] [-24,-14] [-99,-24] NA NA NA 
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Flood risk NA NA NA [-1000,50] [50,150] [150,250] [250,1000] 

Drought 
risk  NA NA NA [-1000,0] [0,1] [1,2] [2,1000] 

        

Sugarcane        

Yield 
limiting 
factor  

Extremely 
high yield 
gain  

High yield 
gain 

Moderate 
yield gain 

No 
change  

Moderate 
yield loss 

High yield 
loss 

Extremely 
high yield 
loss  

Heat 
stress NA NA NA [-99,1] [1,5] [5,7] [7,99] 

Frost risk [-1,99] [-10,-1] [-20,-10] [-99,-20] NA NA NA 

Flood risk NA NA NA [-1000,50] [50,150] [150,250] [250,1000] 

Drought 
risk  NA NA NA [-1000,1] [1,3] [3,5] [5,1000] 

        

Sunflower        

Yield 
limiting 
factor  

Extremely 
high yield 
gain  

High yield 
gain 

Moderate 
yield gain 

No 
change  

Moderate 
yield loss 

High yield 
loss 

Extremely 
high yield 
loss  

Heat 
stress NA NA NA [-99,1] [1,5] [5,7] [7,99] 

Frost risk [-1,99] [-12,-1] [-22,-12] [-99,-22] NA NA NA 

Flood risk NA NA NA [-1000,50] [50,150] [150,250] [250,1000] 

Drought 
risk  NA NA NA [-1000,1] [1,2] [2,3] [3,1000] 

        

Wheat        

Yield 
limiting 
factor  

Extremely 
high yield 
gain  

High yield 
gain 

Moderate 
yield gain 

No 
change  

Moderate 
yield loss 

High yield 
loss 

Extremely 
high yield 
loss  

Heat 
stress NA NA NA [-99,1] [1,3] [3,5] [5,99] 

Frost risk [-1,99] [-12,-1] [-22,-12] [-99,-22] NA NA NA 

Flood risk NA NA NA [-1000,50] [50,150] [150,250] [250,1000] 

Drought 
risk  NA NA NA [-1000,1] [1,2] [2,3] [3,1000] 

        

Table grapes        

Yield 
limiting 
factor  

Extremely 
high yield 
gain  

High yield 
gain 

Moderate 
yield gain 

No 
change  

Moderate 
yield loss 

High yield 
loss 

Extremely 
high yield 
loss  

Heat 
stress NA NA NA [-99,1] [1,3] [3,5] [5,99] 

Frost risk [-1,99] [-12,-1] [-22,-12] [-99,-22] NA NA NA 

Flood risk NA NA NA [-1000,50] [50,150] [150,250] [250,1000] 

Drought 
risk  NA NA NA [-1000,0] [0,1] [1,2] [2,1000] 
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Annex F – Climate impacts on supplier sourced crops’ performance 
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